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Can forest management based on natural
disturbances maintain ecological resilience?

C. Ronnie Drever, Garry Peterson, Christian Messier, Yves Bergeron, and
Mike Flannigan

Abstract: Given the increasingly global stresses on forests, many ecologists argue that managers must maintain ecolog-
ical resilience: the capacity of ecosystems to absorb disturbances without undergoing fundamental change. In this re-
view we ask: Can the emerging paradigm of natural-disturbance-based management (NDBM) maintain ecological
resilience in managed forests? Applying resilience theory requires careful articulation of the ecosystem state under con-
sideration, the disturbances and stresses that affect the persistence of possible alternative states, and the spatial and
temporal scales of management relevance. Implementing NDBM while maintaining resilience means recognizing that
(i) biodiversity is important for long-term ecosystem persistence, (ii) natural disturbances play a critical role as a gener-
ator of structural and compositional heterogeneity at multiple scales, and (iii) traditional management tends to produce
forests more homogeneous than those disturbed naturally and increases the likelihood of unexpected catastrophic
change by constraining variation of key environmental processes. NDBM may maintain resilience if silvicultural strate-
gies retain the structures and processes that perpetuate desired states while reducing those that enhance resilience of
undesirable states. Such strategies require an understanding of harvesting impacts on slow ecosystem processes, such as
seed-bank or nutrient dynamics, which in the long term can lead to ecological surprises by altering the forest’s capacity
to reorganize after disturbance.

Résumé : Etant donné 1’augmentation globale des stress dans les foréts, plusieurs écologistes croient que les gestion-
naires doivent maintenir la résilience écologique, c’est-a-dire la capacité des écosystemes a absorber les perturbations
sans subir de changements importants. Dans cette revue, nous nous demandons si le nouveau paradigme de
I’aménagement basé sur les perturbations naturelles peut maintenir la résilience écologique dans les foréts aménagées?
L’application de la théorie de la résilience exige une articulation minutieuse de 1I’état de 1I’écosysteme considéré, des
perturbations et des stress qui affectent la persistance d’états alternatifs potentiels ainsi que les échelles spatiales et
temporelles de la pertinence de I’aménagement. L’application de I’aménagement basé sur les perturbations naturelles,
tout en maintenant la résilience, oblige a reconnaitre que (i) la biodiversité est importante pour la persistance a long
terme de I’écosysteme, (ii) les perturbations naturelles jouent un role crucial dans la genese de 1’hétérogénéité de la
structure et de la composition a de multiples échelles et (iii) I’aménagement traditionnel tend & rendre les foréts plus
homogenes que celles qui sont naturellement perturbées et a augmenter les chances de changements catastrophiques
inattendus en réduisant la variation de processus environnementaux clés. L’aménagement basé sur les perturbations na-
turelles peut maintenir la résilience si les stratégies sylvicoles permettent de conserver les structures et les processus
qui perpétuent les états désirés tout en réduisant ceux qui favorisent la résilience d’états indésirables. De telles straté-
gies exigent de comprendre les impacts de la récolte sur les processus écosystémiques lents, tels que la banque de grai-
nes ou la dynamique des nutriments, qui peuvent causer des surprises a long terme en modifiant la capacité de la forét
a se réorganiser apres une perturbation.
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Introduction

The structure and composition of forests are increasingly
influenced by global phenomena such as the presence of in-
troduced species, climate change, and anthropogenic alter-
ations of biogeochemical cycles (Newman 1995; Vitousek et
al. 1997; Simberloff 2000; Dale et al. 2001; Honnay et al.
2002). Major transformations of forest ecosystems have
occurred or are underway, in many cases resulting in sub-
stantial losses of timber values or commercial extinction of
valuable tree species, along with a reduction in native bio-
diversity (Liebhold et al. 1995; Laurance 1999; Simberloff
2000; Hoekstra et al. 2005). In addition to these global influ-
ences, forests are also being shaped by regional and local
forces. In Canada, for example, the area logged per year
doubled between 1960 (~500000 ha-year!) and 1995
(~1 Mha-year™') and, in many years, harvesting has replaced
fire as the dominant disturbance in productive forests (World
Resources Institute 2000). Moreover, forests often experi-
ence the cumulative and often fragmentary impacts of devel-
opment pressures such as road-building, oil and gas
development, urban and suburban encroachment, and agri-
culture (Forman 2000; Trombulak and Frissell 2000; World
Resources Institute 2000; Schneider et al. 2003). This com-
bination of disturbance and developmental pressures can
reduce biodiversity and diminish the capacity of forests to
continue providing ecological goods and services of the
same quantity and quality in perpetuity (Toman and Ashton
1996; Costanza et al. 2000).

In response to these concerns, many ecologists have ar-
gued that resource managers should focus on maintaining
ecological resilience, defined here as the capacity of natural
systems to absorb disturbances without undergoing change
to a fundamentally different state (e.g., Holling 1973;
Holling 1986; Peterson et al. 1998). These authors propose
that rather than setting specific and sustained targets, such as
allowable annual cuts or a minimum amount of wildlife hab-
itat, managers should seek to enhance the resilience of eco-
system states deemed essential to the provision of ecological
goods and services while at the same time decreasing the re-
silience of states that do not provide these or that do so at
low levels (Gunderson and Holling 2002). Here we ask: Can
natural-disturbance-based management (NDBM) maintain or
confer ecological resilience in managed forests? We review
the concepts inherent in such a question, drawing principally
from examples in North American forests, and present ideas
on how to anticipate and avoid potential ecological surprises
that can arise when goods and services are extracted from
forest ecosystems on a sustained basis. We then recommend
how forest managers can integrate resilience into their
silvicultural regimes in the context of NDBM. While our
recommendations are most applicable to large tracts of forest
managed for traditional forest values such as timber or wild-
life habitat, we believe that they also apply to other types of
tenure such as wood lots or community forests.

Review of concepts

Ecological resilience
Ecological resilience is the capacity of an ecosystem to
absorb disturbance and undergo change while maintaining
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its essential functions, structures, identity, and feedbacks
(Holling 1973; Peterson et al. 1998; Walker et al. 2004). Re-
silience is often synonymous with adaptive capacity, i.e., the
ability of a system to reconfigure itself in the face of distur-
bance or stresses without significant decreases in critical as-
pects such as productivity or composition (Gunderson 2000;
Carpenter et al. 2001). Resilience is an emergent property of
ecosystems that may be estimated from the magnitude of
disturbance a system can absorb without undergoing signifi-
cant transformational change (Gunderson 2000; Walker et
al. 2004). For example, resilience of aspen parkland can be
estimated from the maximum frequency of intense fires or
drought that it can experience before converting to grass-
land. This definition of resilience therefore assumes the exis-
tence of alternative system states (e.g., parkland vs.
grassland) and is primarily concerned with (i) how changes
in the structure of an ecosystem can alter its behaviour, and
(ii) how a given state persists over time (Holling 1973;
Gunderson 2000; Walker et al. 2004). Alternatively, resil-
ience may be measured as the probability that a given state
will persist over the time period of interest (Peterson 2002b).
Whether resilience is desirable or not depends both on the
values desired from the system and on its current state
(Carpenter et al. 2001). For instance, a fragmented patch of
forest composed principally of exotic species with low so-
cial utility may be an undesirable but highly resilient state;
alternatively, a productive monoculture of trees may be an
economically desirable state with low resilience to root dis-
ease or other pathogens.

Unfortunately, the multiple meanings given to ecological
resilience in the literature have created confusion and hin-
dered application of a concept that is inherently somewhat
inexact (Beisner et al. 2003; Walker et al. 2004). To estimate
resilience, it is necessary to specify several qualitative char-
acteristics. These include the state(s) and spatial scale of the
system being considered (resilience of what), the perturba-
tions of interest that affect the persistence of system states
(resilience fo what), and the temporal scale of interest (Car-
penter et al. 2001; Walker et al. 2004). The temporal scale
depends on relevant aspects of the system of interest, such as
turnover rates of dominant species; for example, it will be
considerably shorter in studies of microcosms than in those
of forests (Connell and Sousa 1983). Temporal scale is also
important for classifying the system processes as either fast
or slow, i.e., as either variables or parameters in a model of
the system (Ludwig et al. 1978; Beisner et al. 2003).

In a forest context, it is important to clarify the relation-
ship of succession to the system states of interest. A forest
that changes as it ages is not necessarily changing states;
rather it may be considered to be undergoing compositional
and structural change internal to the system without switch-
ing to an alternative state, e.g., when a forest changes into a
grassland, tundra, or sphagnum bog. However, there are
some circumstances when succession may give rise to an al-
ternative and less desired state, such as when a forest under-
goes gradual paludification to a bog-like state (Banner et
al.1983; Fenton et al. 2005), or when a shade-intolerant de-
ciduous stand senesces into a permanently shrub-dominated
condition (Shields and Bockheim 1981; Nierenberg and
Hibbs 2000). In essence, the role played by succession de-
pends on how research questions or management issues are
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Table 1. Alternative stables states in forest ecosystems.

2287

Location

Alternative states

Reference(s)

Boreal forest of New Brunswick, Canada

Deciduous old-growth stands in Minnesota, USA

Outbreak vs. endemic abundance of spruce budworm

High vs. low abundance of a forest forb relative to

Jones 1975; Ludwig et al.
1978
Augustine et al. 1998

high abundance of an ungulate herbivore

Serengeti Mara woodlands, Tanzania

Wooded vs. grassland states resulting from fire and

Dublin et al. 1990;

elephant disturbance

Northern boreal forest, Sweden

Birch—spruce succession vs. pine dominance as a

Danell et al. 2003

function of ungulate browsing

Southern boreal forest of Quebec, Canada

Pinelands in New Jersey, USA

Dense spruce-moss stands vs. lichen woodlands as a
function of compounded disturbance

Open, sparsely vegetated areas dominated by lichen

Payette et al. 2000;
Dussart and Payette
2002

Sedia and Ehrenfeld 2003

mats vs. moss-dominated areas that foster pitch
pine (Pinus rigida Mill.) forests

Sandhill forests, Florida, USA

Hardwood vs. longleaf pine (Pinus palustris Mill) as

Peterson 2002

a function of fire frequency

Tropical rain forests

Mesic, fire-inhibiting vs. xeric fire-susceptible for-

Cochrane 2003

ests mediated by opening of roads and agriculture

formulated, the time scales involved, and their relationship
to relevant system states (Carpenter et al. 2001).

Alternative stable states

“Alternative stable state” can have one of two, not neces-
sarily mutually exclusive, meanings (Beisner et al. 2003). In
population or community ecology, stable state is a relatively
constant configuration or assemblage of individuals or spe-
cies (Lewontin 1969; Sutherland 1974; Law and Morton
1993). In ecosystem ecology, a stable state is a set of self-
perpetuating and mutually reinforcing structures and pro-
cesses (Holling 1973; Peterson et al. 1998); this is the defi-
nition used in this paper. Within a “stable” state, ecosystem
attributes such as species composition can fluctuate, but
these fluctuations occur within certain relatively constant
limits maintained by internal ecosystem structures or exter-
nal constraints (Connell and Sousa 1983; Scheffer et al.
2001). Moreover, stable states always show slow trends,
such as paludification (Scheffer and Carpenter 2003). When
resilience is diminished and an ecosystem reorganizes, con-
trol of ecosystem behaviour shifts from one set of interacting
physical and biological structures and processes to another
(Peterson et al. 1998).

A great variety of ecosystems can exist in alternative sta-
ble states (Walker and Meyers 2004). Alternative stable
states have been documented for lakes, coral reefs, marine
fisheries, benthic systems, wetlands, forests, savannas, and
rangelands (Carpenter et al. 2001; Scheffer et al. 2001). Ex-
amples of alternative stable states in forest ecosystems are
presented in Table 1.

As with resilience, whether a specific stable state is desir-
able depends on its social or economic utility and the man-
agement context. In unmanaged ecosystems, evolution has
led to dominant states that have high resilience as a function
of how prevailing natural disturbances influence the struc-
tures and processes that provide this resilience. Human inter-
vention beyond the historical range of variability can cause
novel pressures on ecosystems and alter the natural dynam-

ics between disturbances and stable states, thereby changing
the “stability landscape” (Scheffer et al. 2001) in the man-
aged ecosystem. Often, this change is manifested as an in-
crease in the number of stable states.

Typically, shifts among states can occur in one of two
ways: (1) changes in slow processes that trigger responses in
a fast process, and (2) compounding of disturbances. A clas-
sic example of changes in slow variables triggering rapid
change in forests is the control of spruce budworm
(Choristoneura fumiferana Clem.) by birds and its relation-
ship to the density of the spruce budworm’s primary prey,
balsam fir (Abies balsamea (L.) Mill.) in spruce—fir forests
of eastern Canada (Holling 1973; Ludwig et al. 1978). Be-
tween outbreaks, the density and size of balsam fir and
spruces (Picea spp.) increase gradually (slow process), re-
ducing the efficiency with which predatory birds forage (fast
process). Once foraging efficiency drops below a certain
threshold, avian predation can no longer play an important
role in maintaining low spruce budworm abundance and, in
combination with other controlling factors, this leads to
budworm outbreaks (Holling 1988).

In addition to slow changes in environmental variables,
shifts between ecosystem states depend on the frequency, in-
tensity, and compounding of disturbances. Typically, distur-
bances at the larger end of their range of intensity and size
do not cause a lasting change in the fundamental character
of a system (Paine et al. 1998). Large infrequent distur-
bances usually do not undermine the mechanisms that deter-
mine species composition, as composition before and after
such disturbances is typically similar (Turner et al. 1997).
Exceptions include very severe events, such as lava flows or
intense and soil-destroying fire, which eliminate key ecosys-
tem components. Wholesale transition to fundamentally dif-
ferent states — “regime shifts” — is most frequent when
multiple disturbances occur within the normal recovery time
of the system (Paine et al. 1998). When either the spatial ex-
tent or, more commonly, the frequency of a given severe dis-
turbance is at or beyond the extreme end of its historical
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range of variability, the regenerative capacity of a ecosystem
may be overwhelmed (Paine et al. 1998). One example of
such a regime shift is the abrupt change from closed-canopy
spruce—moss forest to open-canopy woodland that can occur
following consecutive disturbances in eastern North Amer-
ica (Payette et al. 2000). When insect outbreaks, fire, and
harvesting occur in rapid succession, their combined impact
can dramatically reduce the spruce seed pool, not only im-
mediately after disturbance but for a prolonged period,
thereby engendering a shift from closed forest to sparse trees
with thick lichen mats that inhibit further tree establishment
in a positive feedback loop (Payette et al. 2000; Payette and
Delwaide 2003). Wind and fire can similarly occur as
cascading catastrophic perturbations in northern hemlock—
hardwood forests, causing a shift in dominance from shade-
tolerant trees to sustained aspen—birch dominance (Lorimer
1977, Frelich and Reich 1999). Likewise, in the near-boreal
forests of Minnesota, USA, when two severe fires occur
within 10 years, a shift in species dominance from jack pine
(Pinus banksiana Lamb.) to trembling aspen (Populus
tremuloides Michx.) can occur as the result of the second
fire consuming surviving jack pine propagules (Heinselman
1973).

Panarchy: an integrative theory of change and
ecosystem dynamics

A general theory of change in complex adaptive systems,
termed panarchy, integrates resilience and ecosystem dy-
namics at multiple scales (Gunderson et al. 1995; Holling
2001; Gunderson and Holling 2002). It combines the notion
of an adaptive cycle with the hierarchical structure of eco-
system structures and processes. Briefly, panarchy considers
ecosystems as a set of interacting adaptive cycles that occur
at different spatial and temporal scales. It is a way of look-
ing at natural systems rather than being itself a specific test-
able hypothesis (Carpenter et al. 2001; Gunderson and
Holling 2002).

The adaptive cycle

Resilience theory states that complex systems such as for-
ests do not simply tend towards an equilibrium condition,
but rather cycle dynamically, based on the tension between
forces that select for efficiency and those that select for nov-
elty (Gunderson and Holling 2002). This adaptive cycle can
be divided into four phases: rapid growth and exploitation
(r) and conservation (K) — the front loop — followed by re-
lease or collapse (£2) and, subsequently, renewal or reorgani-
zation (o) — the back loop (Holling 1986; Fig. 1). The
growth and conservation phases usually occur slowly as a
system organizes. Collapse and renewal are usually rapid as
a system reorganizes. The two complementary and sequen-
tial loops foster both conservation and change (Holling
1986; Holling 2001). The front loop maximizes production,
efficiency, and accumulation of capital, while the back loop
maximizes invention, variety, and re-assortment. The lags
between these periods of stability and bouts of strong selec-
tion and innovative rearrangement mean that diversity is per-
petually created, thereby providing the elements for
resilience over time across a large range of environmental
conditions (Holling and Gunderson 2002).
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Fig. 1. Adaptive cycle of a complex adaptive system. The ar-
rows indicate the speed of change in the cycle: short, narrowly
spaced arrows indicate slow change, while long arrows indicate
rapid change. The exit from the adaptive cycle at the left sug-
gests where in the cycle the potential of a system can leak away
and where a switch into a system with lower productivity and
organization is most likely to occur.
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The front loop of the adaptive cycle is essentially ecological
succession. The system slowly builds biomass, connected-
ness, and potential for change. Gradual change in the front
loop increases a system’s vulnerability to disruption and re-
organization. For example, as a stand ages and its dominant
trees ascend beyond the canopy, windthrow hazard gradually
increases for the entire stand (Everham and Brokaw 1996).
During the front loop, resilience is initially high during the
exploitation phase — the system is capable of absorbing a
wide range of disturbances without shifting into an alterna-
tive stable state — but gradually decreases through the K
phase as the system reaches its limits of mature growth
(Fig. 2). Rigidity and internal control of processes
(connectedness) increase, as do the system’s stored energy
and biomass (potential). At the end of the K phase the sys-
tem has low resilience, so even small perturbations can initi-
ate a cascade of rapid structural changes throughout the
highly connected system. In the K phase the system may ac-
tually be very stable, e.g., a forest will rebound quickly from
a small disturbance such as localized windthrow. However,
this stability is narrow and local (Gunderson 2000), high-
lighting the possible trade-off between resilience and stabil-
ity (Holling 1973).

Rapid change and reorganization characterize the back
loop. As the system collapses (€2) and begins to reorganize
(ov), attributes or components of the ecosystem can be lost or
dramatically changed before a new system begins to orga-
nize itself. Moreover, external forces or variability can exert
a strong influence on the system, e.g., seeds from veteran
trees or trees outside the disturbed area can exert a lasting
influence on the composition of a regenerating stand. As the
o phase unfolds, many experimental and innovative combi-
nations of system components are “tried” locally and most
fail, as is observed, for example, in the many distinct assem-
blages of trees and shrubs that established following the
eruption of Mount St. Helens (Franklin and MacMahon
2000). It is during these periods of collapse and reorganiza-
tion that the future development of the system can most inti-
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Fig. 2. Resilience as a third dimension in the adaptive cycle. Re-
silience changes throughout the cycle, gradually decreasing as
the cycle moves from the r to the K phase and increasing as the
system rapidly shifts in the back loop.

mately depend on small, fast processes, i.e., as it reorganizes
around “seeds” of order emerging from lower levels of
organization (Peterson 2000). During the back loop,
connectedness and potential are low and internal controls of
system processes are weak; resilience to another similar dis-
turbance is high because change in one component of the
system has few consequences for other components (Fig. 2).
Following the back loop, if sufficient system components re-
main, the system may then reenter the r phase and begin
anew to build complexity, connectedness, and resilience. Al-
ternatively, the system may reorganize into a new configura-
tion based on the arrival of novel species or components.

Cross-scale structure and connections

The processes and structures that control ecosystem be-
haviour can be understood as a cross-scale, nested set of
adaptive cycles (Holling and Gunderson 2002). In the boreal
forest, for instance, Holling (1986) recognizes the following
scales and their associated processes (Fig. 3). At fine scales,
pattern and process are dictated by biophysical forces that
control plant physiology and morphology. At the coarser and
slower scale of patch dynamics, competition among plants
for nutrients, light, and water determines local species com-
position and regeneration. The next coarser and slower scale
is set by mesoscale contagious processes such as fire, insect
outbreaks, and large-mammal herbivory that together deter-
mine the structure and successional dynamics of stands at
scales ranging from tens of metres to kilometres, and from
years to decades. At the landscape scale, climate, along with
geomorphological and biogeographical processes, alters eco-
logical structure over hundreds of kilometres and millennia.

The hierarchical structure contributes to resilience be-
cause it performs two important functions: (1) conserving
and stabilizing conditions for the smaller and faster levels,
i.e., interactions across scales in a hierarchy are asymmetri-
cal, so larger, slower levels constrain the behaviour of
smaller, faster levels, and (2) generating and “testing” inno-
vations such as mutations or new species assemblages by
means of experiments occurring within each level (Simon
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Fig. 3. Time and space scales in the boreal forest (Holling 1986)
and atmosphere (Clark 1985) illustrating relationships among
processes that structure the forest. The interactions among the
slow vegetation processes and faster atmospheric processes are
mediated by mesoscale contagious processes like fire or spruce
budworm outbreaks.
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1974; Levin 1981; O’Neill et al. 1986). In other words, finer
scale positive feedback creates heterogeneity, while coarser
scale negative feedback stabilizes it (Levin 2000).

Two types of cross-scale connections or feedbacks among
adaptive cycles affect resilience: “revolt” and “remember”
(Holling and Gunderson 2002; Fig. 4). These connections
are important during times of rapid change in adaptive cy-
cles. Revolt refers to what occurs when a level in the hierar-
chy enters the collapse (£2) phase and triggers a crisis in the
next larger, slower cycle because the larger, slower cycle is
itself in its K phase, a phase of low resilience. In the western
boreal forest, for example, this occurs when fuel loads and
climatic conditions allow a locally ignited ground fire to
spread to a tree crown, then to a patch of trees, and eventu-
ally an entire stand. If revolt leads to another crisis in higher
cycles undergoing a phase of low resilience, then change to
an alternative state can be caused by an abrupt positive-
feedback chain of collapse (Holling 1996; Carpenter et al.
2001).

Remember refers to the cross-scale connection that occurs
when collapse occurs at one level and its development is
shaped by the accumulated biomass or potential of a slower
and larger level in its K phase (Fig. 4). A forest “remem-
bers” its predisturbance composition and structure by the
presence of at least three interacting parts (Nystrom and
Folke 2001; Lundberg and Moberg 2003; Folke et al. 2004):
biological legacies, mobile links, and support areas. Biologi-
cal legacies are species, patterns, or structures that persist
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Fig. 4. Connections among adaptive cycles in panarchy. “Revolt”
refers to how a critical change in one adaptive cycle can cascade
upwards to a vulnerable stage in a larger, slower cycle, e.g.,
when forest conditions are such that a locally ignited ground fire
can spread to a tree crown, then to a patch of trees, and eventu-
ally to the entire stand. “Remember” refers to how renewal is fa-
cilitated at scale by drawing on the accumulated potential in a
larger, slower cycle, e.g., by the presence of veteran trees that
can be refugia from fire or provide seeds and nutrients to a re-
generating stand.
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within a disturbed area and act as sources of ecosystem re-
covery, such as large living and dead trees or tree clusters
that provide seeds, buried rhizomes or roots, and nutrients to
the regenerating stand (Franklin and MacMahon 2000). In
some cases these legacies may be biased towards structures
or patches that are more likely to survive the disturbance,
such as wet or low-lying sites during forest fires. Mobile
links are “keystone” organisms that move between habitats
and ecosystems after a disturbance to provide essential eco-
system processes that are lacking, such as pollination, seed
dispersal, or nutrient translocation, by connecting areas that
may be widely separated spatially or temporally (Lundberg
and Moberg 2003). Support areas refer to landscape patches
or habitats that maintain viable populations of mobile links
(Lundberg and Moberg 2003). Together these interacting
parts play a pivotal role in renewal and reorganization of a
disturbed system.

Natural-disturbance-based management

NDBM refers to silvicultural practices and strategic-
planning approaches that emulate natural-disturbance re-
gimes (Hansen et al. 1991; Hunter 1993; Attiwill 1994,
Bergeron and Harvey 1997; Angelstam 1998). The underly-
ing rationale is that management approaches based on the
dominant natural-disturbance regime will restore or maintain
biodiversity and essential ecosystem functions by restoring
or maintaining the full historical range of habitat heteroge-
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neity observed at multiple scales in unmanaged forests
(Franklin and Forman 1987; Pickett et al. 1997). It is essen-
tially a coarse-filter approach to biodiversity conservation
that recognizes that (i) humans tend to homogenize or con-
strain the type, frequency, severity, and size of disturbed
patches to the mesoscale (Bergeron et al. 2002; Kuuluvainen
2002), and (ii) spatial and temporal variability in distur-
bances, both human and natural, is essential to maintaining
the habitat heterogeneity on which all component species of
an ecosystem depend (Hunter et al. 1988; Kuuluvainen
2002). Typically, NDBM approaches seek to maintain
biodiversity relative to present or reference (pre-industrial or
pre-European settlement) forest ecosystems (Bergeron et al.
2002).

NDBM approaches have been articulated for landscape
and stand scales. At the landscape or strategic-planning
scale, NBDM entails creating or maintaining, as closely as
possible to that observed in “natural” forests, the abundance
and distribution of different age classes, the diversity of size
classes of disturbed areas, and the spatial arrangement of
different stand types over time (Angelstam 1998; Bergeron
et al. 1999). These objectives may be attained by varying ro-
tation length (Burton et al. 1999; Seymour and Hunter 1999)
or diversifying silvicultural practices in different cohorts
(Bergeron et al. 2002). At the stand scale, NDBM focuses
on silvicultural systems, such as variable retention, that pre-
serve elements of forest structure within the historical range
of variability retained by dominant disturbances (e.g., large
woody debris, trees of various sizes and species, including
large-canopy dominants, snags of various sizes and stages of
decay, and gaps in the canopy) (Franklin 1993; Franklin et
al. 1997; Mitchell and Beese 2002; Aubry et al. 2004). Re-
taining structure can maintain associated ecological func-
tions and processes; preserve genetic information of trees,
shrubs, and associated biota; maintain structural complexity;
improve connectivity between cutting units and forested ar-
eas; and serve as “lifeboat” habitat for organisms that might
otherwise be lost temporarily or permanently (Franklin et al.
1997; Haeussler and Kneeshaw 2003). At both scales,
NDBM schemes include a myriad other components that are
beyond the scope of this article (e.g., frequency of land-
scape-scale disturbances, strategies for managing the abun-
dance and distribution of various structural types in time and
space, process restoration such as by prescribed fire).

Traditional forest management, biodiversity,
and resilience

Typically, at the onset of a given management regime,
managers do well at achieving a narrow set of well-defined
objectives by controlling a target variable such an allowable
annual cut or a given rotation period (Holling and Meffe
1996; Gunderson 2000). This success is typically the result
of a “command and control” strategy that seeks to standard-
ize or minimize the natural variability of key ecosystem pro-
cesses such as fire or regeneration (Pastor et al. 1998).
Unfortunately, initial management successes have the simul-
taneous consequences of (i) encouraging people to become
dependent on the continuation of the management regime
and (i7) eroding the ecological resilience of the desired eco-
system state by slowly changing other parts of the ecosystem
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and reducing ecosystem variability in time and space
(Holling 1986). This leads to a condition in which ecological
change becomes increasingly undesirable yet more difficult
to avoid. When dramatic change does arrive, it is typically a
surprise and a policy crisis ensues (Gunderson et al. 1995).
Such is the “pathology of resource management” — any sys-
tem of practices, institutions, and regulations that manages
an ecosystem for the consistent and predictable flow of
goods or services results in reduced resilience, dependent so-
cieties, and inflexible management agencies (Holling and
Meffe 1996). For example, elevated harvesting rates and in-
tensive management for sustained timber yields from the
1950s to the 1980s greatly reduced compositional, structural,
and age-class diversity across the spruce—fir forests of New
Brunswick, Canada. This shift had several unexpected con-
sequences, including a long-term decline in diversity
(though not volume) of wood products, elevated harvesting
costs, widespread failures of advance regeneration, the com-
mercial extinction of eastern white pine (Pinus strobus L.), a
long period of chronic spruce budworm infestations, and
sustained shortages of high-quality timber (Baskerville
1985, 1988; Regier and Baskerville 1986).

The resilience theory summarized above suggests that ho-
mogenization of landscape structure and composition
through reductions in the variability of disturbance regimes
can entrain faster major cycles of adaptive change because
normalized forests are more connected and less diverse
across both time and space. This suggestion is consistent
with general concerns that increased forest homogenization
can increase overall landscape susceptibility to fires, insects,
and diseases (Franklin and Forman 1987; Turner and
Romme 1994; Bergeron et al. 1998) or that disturbances ini-
tiated in one part of the landscape are more easily transmit-
ted to other parts in a well-connected landscape (Peterson
2002a). In the long term, reducing the diversity in type, fre-
quency, or size of disturbance means that fewer selective
forces are at work, owing to the harmonization of distur-
bance cycles; this harmonization would lead to less renewal
and, eventually, less diversity. Evidence of this process at
work comes from documentation of extensive losses of
biodiversity in intensively managed Scandinavian forests due
to the combined effects of fire suppression and long-term in-
tensive forest management (Berg et al. 1994; Berg et al.
1995; Hansson 1997; Angelstam 1998).

Given the homogenizing potential of traditional manage-
ment on forest diversity, ecologists and managers are
increasingly emphasizing that biodiversity should be main-
tained to sustain desirable system states as environmental
conditions change over time (Peterson et al. 1998;
Kuuluvainen 2002; Bengtsson et al. 2003). It is established
in the literature that (i) heterogeneous natural systems like
forests are more stable than simpler artificial systems like
crops and laboratory populations (Murdoch 1975; McCann
2000), (ii) adequate performance of ecosystems depends on
having diverse species in all necessary functional groups
(pollinators, primary producers, herbivores, etc.) (Schindler
1990), and (7ii) the persistence of ecological function over
time depends on the diversity of response by different spe-
cies within a functional group to changing environmental
conditions (i.e., response diversity) (Naeem et al. 1994,
Walker et al. 1999; Elmgqvist et al. 2003). In other words, re-
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silient ecosystems depend on functional diversity and
response diversity at multiple scales (Peterson et al. 1998).

In forests, evidence that diversity and complexity afford
increased resilience comes from studies of both natural and
managed areas. These studies show that forests with greater
structural and compositional diversity more easily resist dis-
turbance, more quickly regain predisturbance composition,
and in some cases, are more productive than less diverse
forests. At the landscape scale, increasing complexity may
decrease the spread rate and extent of diseases and distur-
bances (Turner et al. 1989; Rodriguez and Torres-Sorando
2001), decrease survival and reproductive rates of introduced
species (Simberloff 1988; Cantrell and Cosner 1991;
Saunders et al. 1991; Andren 1994; Bender et al. 1998;
Hiebeler 2000), and globally stabilize locally unstable popu-
lation dynamics (Hastings 1977; May 1978; Reeve 1990;
Taylor 1990). At the stand scale, species composition has
been shown to be more stable and to recover more quickly
from disturbance in sites with a high diversity of understory
plants than in less species-rich sites (De Grandpre and
Bergeron 1997; Turner et al. 1999). Plantations are typically
less resilient to disturbances such as fire and often experi-
ence more pest outbreaks than natural forests (Schowalter
1988; Perry 1998; Coyle et al. 2005). In terms of productiv-
ity, Caspersen and Pacala (2001) analyzed a large set of US
forest inventory data and found that rates of stand growth in-
crease monotonically with canopy species richness, irrespec-
tive of successional status. In other words, stands with high
tree diversity, of either early- or late-successional status, had
higher annual growth rates than respective low-diversity
early- or late-successional stands (Caspersen and Pacala 2001).

In practice, whether enhanced connectedness due to ho-
mogenizing management activity is beneficial or detrimental
depends on the exchange process, patch types, stresses or
disturbances, desired states, and management objectives for
the forest in question. For example, if maintaining viable
grizzly bear populations in managed areas is an objective,
retaining connectedness among habitat types required by
grizzlies for foraging and reproduction is critical (Weaver et
al. 1996). Conversely, if management objectives include the
maintenance of viable populations of endemic herbs, the en-
hanced connectedness provided by forest roads that augment
the dispersal of introduced plant species is clearly detrimen-
tal (Trombulak and Frissell 2000).

Can forest management based on natural
disturbances maintain ecological
resilience?

In a forestry context, resilience-based management refers
to a set of planning and silvicultural practices aimed at
building an ecosystem’s capacity to persist in a desired state
and to reorganize in the face of severe disturbances (Walker
et al. 2002). In cases where the ecosystem is already in an
undesirable state or configuration, resilience-based manage-
ment means reducing the resilience of the present state and
enhancing that of more desirable states. Any such practices
or planning approaches must consider the present system
state in relationship to its adaptive cycle, its likely trajecto-
ries given ongoing stresses, or other likely influences on sys-
tem change (i.e., climate change, the presence of introduced

© 2006 NRC Canada



2292

species, development pressures from urbanization, etc.) and
how the present state compares with desired system states.

The principal foci for a NDBM approach that can main-
tain ecological resilience are, clearly, disturbances and their
retained biological legacies. Both NDBM and a resilience
perspective recognize the importance of maintaining struc-
tural and compositional heterogeneity at multiple scales, as
well as the role that disturbances play in generating hetero-
geneity. Integrating the two perspectives requires an under-
standing not only of the dynamics of disturbance to allow
emulation of disturbance at relevant scales, but also of the
impacts of such an approach on the processes and structures
that perpetuate desired system states. Moreover, it requires
an understanding of how management can affect slow sys-
tem processes, such as long-term seed-bank or nutrient dy-
namics, that may in the long term lead to ecological
surprises by altering the capacity of a forest to reorganize
and reestablish following a disturbance. For instance, tree re-
moval in northern forests can alter the competitive balance
on the soil towards cryptogram mats that inhibit the germi-
nation and establishment of regenerating trees (Dussart and
Payette 2002).

At a strategic or landscape level, implementing NDBM
while maintaining resilience means that forest managers
must make several decisions regarding the role of distur-
bances within their jurisdiction, in particular whether har-
vesting will be a substitute for or additive to the frequency
of intense natural disturbances. If the former, the role of
large-scale disturbance suppression and its impacts on the
slow variables that can, in the long term, diminish the resil-
ience of certain states needs to be addressed. If the latter, a
decision needs to made about the implications of com-
pounded impacts on the resilience of any desired states put
at risk by the additive disturbances, especially if present har-
vesting rates are deemed to be outside the historical range of
variability or if harvesting has become the dominant distur-
bance across the landscape. A further landscape-level con-
sideration is that the potential for homogenization makes it
important to avoid implementing the same silvicultural sys-
tem everywhere. Given the infeasibility of truly replicating
natural disturbance by harvesting, preventing homogeniza-
tion also depends on a network of reserves and protected
zones to maintain heterogeneity throughout the managed
area as well as support areas for important mobile-link spe-
cies (Bengtsson et al. 2003).

At the stand scale, the retention of ecological structures
during harvest as prescribed by a NDBM approach fits well
with managing for resilience. Retaining structure allows for
the harvested stand to “remember” its preharvest condition —
genetically, compositionally, structurally, and otherwise. In
this respect, a NDBM approach that maintains resilience in-
volves paying close attention to management impacts on
“neighbourhood effects”, i.e., any feedback processes medi-
ated by canopy trees that alter the probability of replacement
by the same or other species following the death of the can-
opy trees (Frelich and Reich 1995, 1999). Neighbourhood
effects may act as positive feedback (self-replacement) or
negative feedback (replacement by another species). Exam-
ples of positive neighbourhood effects include stump sprout-
ing, seed rain, or the deep shade cast by shade-tolerant
species (Wilson and Agnew 1992; Frelich and Reich 1999).
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Examples of negative neighbourhood effects include alter-
ations of soil physical and chemical properties or changes in
mycorrhizal characteristics that favour the growth of species
other than those presently on site (Frelich and Reich 1999;
Frelich 2002). Tailoring prescriptions of stand-level reten-
tion to the species and structures that have positive neigh-
bourhood effects can help maintain the resilience of desired
states. In doing this, it is important to keep in mind that al-
though management may seek to emulate disturbance by re-
taining structure, fundamental differences exist between
harvesting and fire, windthrow, insect outbreaks, and patho-
gens (Quine et al. 1999; McRae et al. 2001). These differ-
ences mean that maintaining diversity through harvesting
may be insufficient to maintain resilience unless the process,
not only the pattern, of disturbance is emulated (Haeussler
and Kneeshaw 2003). For example, in the boreal forest of
Quebec, a form of clear-cutting that protects regeneration
and soils may produce stands with the same even-aged struc-
ture as severely burned stands, but these stands may be less
productive that postfire stands because of enhanced biomass
partitioning into the forest floor rather than living trees
(Fenton et al. 2005; Lecomte et al. 2005).

An important consideration is the compounding of severe
disturbances resulting from salvage operations. Salvage log-
ging of burned, insect-attacked, or blowdown areas can re-
duce biological legacies during a critical phase of system
recovery, diminish capacity for reestablishment of predis-
turbance communities, and alter biogeochemical and hydro-
logical processes (Beschta et al. 2004; Lindenmayer et al.
2004). For example, large-scale salvage operations following
the 1938 hurricane in central New England, USA, entrained
a regional-scale shift in hydrology and, compared with non-
salvaged areas, delayed or prevented the recovery of
predisturbance composition and ecosystem processes (Foster
et al. 1997). Moreover, removal of burned logs and other
woody structure can have long-term consequences on forest
diversity and productivity. In the eastern Canadian boreal
zone, for example, thin, postfire soils are particularly sensi-
tive to compaction and alteration by harvesting equipment
(Brais et al. 2000), and salvage logging simplifies the
biodiversity in ground vegetation (Purdon et al. 2004). Other
important salvage impacts include the recruitment dynamics
of trees that require nurse logs for regeneration and habitat
for cavity-nesting birds and other keystone taxa (Harmon et
al. 1986; Imbeau et al. 2001; Nappi et al. 2004; Fisher and
Wilkinson 2005). In many cases, it may not be economically
or socially desirable to entirely forgo timber supply lost
through fire or other disturbances, making trade-offs neces-
sary in terms of biological legacies and salvaged timber. In
these cases, resilience theory can be especially helpful in
identifying key structural legacies, such as seed trees or
coarse woody debris, that are of paramount importance in
maintaining ecosystem functions and processes.

To return to our title question, can NDBM maintain resil-
ience? The answer is probably yes, if silvicultural strategies
implemented on the basis of natural disturbances retain the
patterns, structures, and processes that perpetuate desired
states while reducing those that enhance the resilience of un-
desirable states. Essentially, forest managers should view
harvesting and regeneration treatments as the back loop of
the managed forest. In this context, we make several recom-
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Table 2. Management recommendations at ecosystem, landscape and stand scales to maintain ecological resilience of desired forest
states while implementing natural-disturbance-based management.

Scale Recommendation Example Reference(s)
Ecosystem  Know your ecosystem — determine its possible alternative ~ Closed-canopy spruce-moss forest or  Payette et al. 2000
system states, understand how disturbance affects open-canopy lichen woodland in
transitions among these states, and investigate how eastern boreal of North America
slow processes such as seed-pool or nutrient dynamics
affect long-term persistence of desired states
Contextualize management area within relevant hierar- Time and space scales of the boreal Holling 1986
chy of scales and understand how disturbances forest
maintain habitat heterogeneity across time and space
Understand how type, frequency, and intensity of Deleterious effects of compounded Payette and Delwaide
silvicultural interventions affect the persistence of logging and fire on spruce 2003
structures and processes that sustain desired states; regeneration
ensure that compounded management actions do not
diminish or fundamentally alter these structures and
processes
Landscape = Understand how dominant disturbances create or maintain ~ Role played by fire in eastern Bergeron et al. 2001;
heterogeneity in landscape age-class structure and Canadian boreal zone and its Drapeau et al.
composition; seek to emulate these processes with impacts on abundance and distri- 2000
harvesting, rather than an arbitrary characteristic such bution of old-growth forest or bird
as disturbance size species assemblages
Characterize, map, and model how different disturbance Delineation of different management  Cissel et al. 1998;
regimes affect age-class composition and structure zones according to historical fire Cissel et al. 1999
across landscape frequency in an Oregon, USA
Diversity forest practices — do not implement the same  “Triad” zoning approach for inten- Seymour and Hunter
silvicultural system everywhere sive, extensive, and emphasis-on- 1999; D’Eon et al.
biodiversity management 2004
Maintain landscape heterogeneity by allocating permanent  Riparian reserves to maintain Hilderbrand et al.
and temporary reserve networks; these networks mobile-link role of salmon-bear 1999; Wilkinson et
should (i) provide support areas and allow connectivity interactions for the transfer of al. 2005; Nappi et
for mobile-link species important for desired states, marine nutrients into temperate al. 2004
and (ii) act as reference areas to facilitate understand- rain forests
ing of slow ecosystem changes and characterize range
of variability of key processes such as disturbance
Understand and minimize impacts of salvage harvesting Reduction of woodpecker habitat and
on biodiversity subsequent impacts on secondary
cavity-nesters
Stand Understand how harvesting intensity and frequency Impacts on plant and structural De Grandpre et al.

affect diversity and abundance of component species
and structural heterogeneity

Retain biological legacies in harvested areas that
enhance “neighbourhood effects” for desired states

Tailor the amount, type, and pattern of retention to

maintain representation of species in all functional,
e.g., pollination or nutrient cycling, groups

Maintain habitat of mobile-link species

diversity of harvesting, in combi-
nation with other disturbances, in
eastern boreal forest

Retention of patches of large veteran
pine trees as seed sources in fire-
dependent ecosystems

Retention of white birch (Betula
papyrifera Marsh.) in Douglas-fir
(Pseudotsuga menziesii (Mirb.)
Franco) stands to maintain
ectomycorhizzal linkages

Retention of snags as habitat to main-
tain mobile-link role of woodpeck-
ers and secondary cavity-nesters
for endemic pest control

1993; De Grandpre
and Bergeron
1997; Reich et al.
2001; Haeussler et
al. 2002

Palik and Pregitzer
1994; Weyenberg
et al. 2004

Simard et al. 1997

Parry et al. 1997;
Fayt et al. 2005
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Table 3. Examples of management actions aimed at maintaining ecological resilience of pine-dominated forests to a catastrophic outbreak of mountain pine beetle at each phase

of the adaptive cycle.

Phase of adaptive cycle

Renewal (o): “direct”

Collapse (£2): “minimize damage”

Exploitation (r): “enhance” Conservation (K): “resist”

Scale

Seed dispersal to mineral soil

Investment in belowground Development of thick bark “Pitching out”

Tree-level responses

resources

Enhancement of cone production

Variable-density thinning

Retention of non-host and unaffected

“Green-tree” group-selection harvesting

Mixed-species planting

Stand-level treatments

trees during salvage
Retention of habitat for beetle preda-

Prescribed fire following harvesting

Creation or protection of snags

Promotion or maintenance of

tors and pathogens

stand complexity

Maintenance of stand complexity

during salvage
“Leading-edge” sanitation harvesting

Retention of entire killed stands

Reduction of beetle dispersal

Maintenance of heterogeneous

Landscape-level tactics

(e.g., pheromone baiting,
habitat management)

age—class structure

Maintenance of dead-fuel continuity

Retention of resistant stands
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mendations to managers who want to implement NDBM
while seeking to maintain the resilience of desired ecosys-
tem states (Table 2). The recommendations assume that
(i) resilience to changing environmental conditions depends
on maintaining both adequate membership in all functional
groups as well as diversity and redundancy within and
across scales for all functional groups (Peterson et al. 1998;
Walker et al. 1999; Elmgqvist et al. 2003), (ii) patterns of re-
tention at stand and landscape scales should maintain ele-
ments of ecological “memory” of desired system states such
as support areas, and (iii) retained biological legacies at
stand and landscape scales should maintain specific ecologi-
cal functions or habitats of mobile-link taxa. Examples of
structural features that allow stands to reorganize after dis-
turbance include seed trees, advance regeneration, coarse
woody debris, snags, and sources of inocula for
mycorrhizae.

To illustrate the above recommendations, we provide an
example of how they may be applied in the context of west-
ern North America’s pine forests (Table 3). The largest re-
corded outbreak of a native insect, the mountain pine beetle
(Dendroctonus ponderosae Hopkins), is currently underway.
These insects caused significant mortality of pines across
over four million hectares in British Columbia, Canada, in
2003 alone (Taylor and Carroll 2004). The pine forests of
this region are connected at multiple scales — the last seven
winters of above-normal temperatures have greatly increased
the climatically suitable habitat for mountain pine beetles
while freeing these insects from the overwintering mortality
that typically keeps them at low abundances (Carroll et al.
2004). Moreover, in recent decades central interior British
Columbia has experienced a tripling of susceptible mature
pine forest as a result of reduced fire frequency, providing an
unprecedented connectedness of the beetles’ preferred habi-
tat type: mature pine forest (Logan and Powell 2001; Taylor
and Carroll 2004). Unless cold winters return, this outbreak
could continue to spread until the supply of susceptible pine
trees is exhausted. Such a scenario entails significant and
sustained long-term decreases in timber supply (British Co-
lumbia Ministry of Forests 2003) and widespread ecosystem
changes. The combination of climatic conditions and land-
scape age-class structure suggests that this forest landscape
is “resetting” itself and that a collapse (o) phase is unfold-
ing. Understanding this historical development and its possi-
ble future consequences (e.g., the potential for catastrophic
fires resulting from a large “pulse” of dead forests across the
landscape combined with forecast increases in the severity
of fire weather; Flannigan et al. 2001) provides essential
context for designing a strategic management approach that
may sustain resilience during times of rapid change (Ta-
ble 3). Moreover, since outbreaks are at different stages in
different parts of the landscape, different practices will be si-
multaneously useful for enhancing resilience.

Conclusion

Understanding resilience may hold the key to overcoming
the challenges inherent in applying NDBM for the sustain-
able use of forest resources. Moreover, this understanding
can resolve the fundamental mismatch between the dynam-
ics of unmanaged systems and human-dominated systems
(Levin 2000), such as disturbance cycles that create a diver-
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sity of forest types vis-a-vis economic forest rotations that
reduce much of this diversity. The mismatch makes it diffi-
cult (i) to see the signs of possible irreversible change until
that change is underway (Scheffer et al. 2001), (ii) to under-
stand the effects of individual management decisions on
coarse scales, and (iii) for individuals to feel that their ac-
tions can influence sustainability, since it is the actions of
billions of people that dictate the dynamics of the global
commons (Levin 2000). Resolution of this mismatch in the
context of forest management may come from developing
policies and practices concerning resource use that recognize
the following.

(1) Traditional forms of harvesting are fundamentally dif-
ferent from fire, windthrow, or other disturbances in our
forests. The relevant question, from a scientific perspec-
tive, is not whether traditional logging or other severe
silvicultural interventions fit within the range of histori-
cal natural variability, but rather how far management
can deviate from this range before compromising eco-
system integrity and resilience (Perry 1998). That said,
NDBM should not only emulate structure and pattern
but also process, as ecological processes and functions
are a fundamental component of resilience.

(2) Ecosystems are prone to catastrophic change when man-
aged by command-and-control strategies that minimize
variation of key environmental variables such as distur-
bance regime or when subjected to long-term anthro-
pogenic pressures that simplify the forest landscape
(Holling and Meffe 1996; Carpenter et al. 2001). This
potential means that management approaches and poli-
cies based on maximum sustained yield are appropriate
only in the rare situations when certainty and controlla-
bility of the managed system are high (Peterson et al.
2003).

(3) The globalization and intensification of anthropogenic
stresses such as those caused by introduced species and
climate change are expected to increase the frequency
and intensity of compounded perturbations and thereby
the frequency of both adaptive and catastrophic shifts
within ecosystems, including forests (Paine et al. 1998;
Regier and Kay 2002). This increase implies that “re-
volt” may become more common and puts the onus on
managers to build or maintain resilience.

Implementing these elements in a management regime
that maintains resilience may be easier for forests than for
other resources such as fisheries or grazing grounds because
forest inventories are easily tractable, there is ample knowl-
edge about ecosystem function and dynamics, and social
willingness to preserve their goods and services for future
generations is increasing (Ostrom et al. 1999; Scheffer et al.
2000). At the very least, understanding resilience can better
contextualize NBDM within its broader goal of sustain-
ability, focus management attention on process rather than
principally on pattern, and help managers escape their preoc-
cupation with the likely unattainable goal of unfaltering sta-
bility (Carpenter et al. 2001; Johnson et al. 2003).
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